

RENC MMU MMU MMU PRATIQUES

29 et 30 SEPTEMBRE 2022

UIC-P - Espaces Congrès 16, rue Jean Rey - 75015 Paris

Sous l'égide de :

SfR 6

Precision medicine today : targeting unique cellular pathways for treating patients

Cibler des voies cellulaires uniques pour une médecine de précision

Monica L. Guzman, Ph.D. Associate Professor of Pharmacology in Medicine Weill Cornell Medicine @DrMonicaGuzman

Sous l'égide de :

Disclosures

- Research Funding from Cellectis
- Research Funding from BridgeMedicines
- Equity of SeqRX. LLC

Precision Medicine

Médecine de precision en cancérologie: Une approche émergente de thérapie anticancéreuse fondée sur le profil une d'une tumeur donnée **Precision medicine (PM)** is an emerging approach that aims to tailor therapeutic strategies for cancer based on the individual's tumor unique profile

Traditional Medicine vs. Precision Medicine

Genetics Immunotherapy Targeted therapies

Most chemotherapeutic approaches were aiming to eliminate rapidly cycling cells

- Taxol
- Cisplatin
- Anthracyclines
- Cytarabine
- Topoisomerase inhibitors

Damage to normal tissues Do not eliminate the cancer stem cells

Tumors may have unique druggable mutational changes

lutated gene	Common genetic alterations	Tumors implicated	Drugs
LK	Mutation, fusion	Non-small cell lung cancer	Alectinib, brigatinib, ceritinib, crizotinib, lorlatinib
TM	Mutation	Breast	Olaparib
SCR-ABL	Fusion	Chronic lymphocytic leukemia, acute lymphocytic leukemia	Bosutinib, dasatanib, imatinib, nilotinib, ponatinib, asciminib
BRAF	Mutation	Melanoma, colorectal, hairy cell leukemia, thyroid	Dabrafenib, encorafenib, vemurafenib, binimetinib, cobimetinib, trametinib
RCA1/2	Mutation	Breast, ovarian, prostate	Olaparib, niraparib, rucaparib, talazoparib
HEK2	Mutation	Breast, ovarian	Olaparib
SF1R	Mutation, fusion	Giant cell tumor	Pexidartinib, sunitinib ^A
GFR	Mutation, fusion, amplification	Non-small cell lung cancer	Afatinib, dacomitinib, erlotinib, gefitinib, osimertinib, brigatinib ^A , amivantamab
RBB2/3/4	Amplification, mutation	Breast	Afatinib ^a , lapatinib, neratinib, tucatinib, trastuzumab ^B , pertuzumab ^B , margetuximab
ZH2	Mutation	Lymphoma	Tazemetostat
GFR1/2/3	Mutation, fusion	Cholangiocarcinoma	Erdafitinib, lenvatinib ⁴ , pemigatinib, infigratinib
TLT3	Mutation	Myeloid leukemia	Gilteritinib, midostaurin, sorafenib ^A
DH1/2	Mutation	Myeloid leukemia, cholangiocarcinoma, glioblastoma	lvosidenib, enasidenib
4 <i>K2</i>	Mutation	Myeloproliferative syndrome	Fedratinib, ruxolitinib
(17	Mutation, fusion	Gastrointestinal stromal tumor, mastocytosis, melanoma	Avapritinib, imatinib, pazopanib ^A , pexidartinib ^A , ripretinib, sorafenib, nilotinib ^A , sunitinib
(RAS	Mutation	Non-small cell lung cancer	Sotorasib
1ET	Mutation, fusion	Non-small cell lung cancer	Cabozantinib ^A , capmatinib, crizotinib ^A , tepotinib
ITRK	Fusion	Many solid tumors at low frequency	Larotrectinib, entrectinib
PDGFRA/B	Mutation, fusion	Gastrointestinal stromal tumor, mastocytosis, hypereosinophilic syndrome	Avapritinib, imatinib ^a , sorafenib ^a , sunitinib ^a , lenvatinib ^a , pazopanib ^a , ripretinib ^a
РІКЗСА	Mutation	Breast	Umbralisib ^A , duvelisib ^A , idelalisib ^A , copanlisib ^A , alpelisib, temsirolimus ^A , everolimus ^A
ML-RARA	Fusion	Myeloid leukemia	Arsenic trioxide, retinoic acid
RET	Mutation, fusion	Renal, thyroid, non-small cell lung cancer	Pralsetinib, selpercatinib, cabozantinib ^A
2051	Fusion	Non-small cell lung cancer	Entrectinib, crizotinib
MO/PTCH1	Mutation	Medulloblastoma, basal cell carcinoma	Vismodegib

^AMutation-specific treatment supported by National Comprehensive Cancer Network guidelines that does not have full FDA approval. ^BBase antibody used alone or as antibody-drug conjugate. J Clin Invest DOI: 10.1172/JCI154943

Tumors may express unique surface molecules

- Monoclonal antibodies
- Antibody-Drug conjugates
- Bi-Specific antibodies
- Chimeric antigen receptor T cells
- Chimeric antigen receptor NK cells

CART cell therapy

- Engineered receptors to target surface molecules
- Allows MHC-independent antigen recognition
- Engagement via single-chain variable fragment (scFv)
- T-cells replicate in response to contact with antigen

Approved CAR T cell products

Allogeneic CART cell process

Targeting CD123 with Allogeneic TCR α/β Deficient CAR T-Cells

UCART123 attributes

- Anti-CD123 scFv
- 2nd Generation CAR:

4-1BB + CD3z

- TCR $\alpha\beta$ knock-out using TALEN[®] Gene Editing (TRAC KO)
- Safety feature: RQR8 + (renders cells sensitive to rituximab)

T-cells were generated and provided by Cellectis SA

Primary derived xenotransplants (PDX) were generated to test in vivo activity of UCART123

Schematic created with biorender.com

Challenges

- How to assess MRD?
- How to monitor CART cells?
- How to determine toxicity against normal cells in a situation closer to what a patient will face?

Novel multiplex digital PCR assays were developed to monitor residual AML and CART in PDX mice

Novel multiplex digital PCR assays were developed to monitor residual AML and CART in PDX mice

Competitive BM/AML xenografts were generated to test in vivo selectivity of UCART123

Cell recruitment: Endothelial, T_{reg}, fibroblast

Cell recruitment: Endothelial, T_{reg}, fibroblast

Epithelial to mesenchymal transition (EMT)

2

Cell recruitment: Endothelial, T_{reg}, fibroblast

Cell recruitment: Endothelial, T_{reg}, fibroblast

Cell recruitment: Endothelial, T_{req}, fibroblast

Cell recruitment: Endothelial, T_{reg}, fibroblast

Cancer cell migration

Checkpoint inhibitors

Drug	Target
Nivolumab	PD-1
Pembrolizumab	PD-1
Atezolizumab	PD-L1
Cemiplimab	PD-1
Ipilimumab	CTLA-4
Avelumab	PD-L1
Durvalumab	PD-L1

Curr. Oncol. 2022, 29, 3044–3060

Some tumors have an aberrant proteome

Nature. 2016 Oct 20;538(7625):397-401 Cancer Cell 36, 559–573, November 11, 2019

Using epichaperome assessment for precision medicine

Can the epichaperome detection assay be used to tailor therapies?

Case: PM254

- A 61 year old woman diagnosed with an accelerated phase <u>myeloproliferative neoplasm</u> in 2013.
- Negative for BCRABL, PDGFRA/B and FGFR1 rearrangements as well as JAK2 mutation.
- Underwent <u>matched unrelated donor allogeneic stem cell transplantation</u> in 2014 for early recurrence.
- In Jan 2016, she **relapsed** and was treated with hydroxyurea.
- Atypical presentation of GVHD and treated successfully with ruxolitinib.
- In 2017, BM biopsy showed progression to AML with fibrosis.
- She developed progressive splenomegaly and weight loss and was treated with 2 cycles of decitabine without response.

PM254 has a novel gene fusion (PML-SYK) and high epichaperome abundance

PU-H71 trial single patient IND results in CR

Recovery of normal blood forming colonies after treatment

NPJ Precis Oncol 2021 May 26;5(1):44

Precision Medicine

Acknowledgments

<u>Guzman Lab</u>

Mayumi Sugita, M.D. Mohammad Alhomoud, M.D. Michelle Foley, M.D. Eloisi Caldas-Lopes, Ph.D. Jorge Contreras, M.D. Leandro Martinez, Ph.D. Nuria Mecia-Trinchant, Ph.D Lunbiao Yan, Ph.D. Srinjoy Goswami Winnie Yip Madi Thies Eti Sinha Kata Alilovic

Collaborators

Weill Cornell Medicine

Gail J. Roboz, M.D.

MSKCC

Gabriela Chiosis, Ph.D

Graphics created with Biorender.com

@DrMonicaGuzman